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ABSTRACT 

 

This paper presents a generalized SIR model that accounts for real-world factors such as time delays in disease 

transmission, treatment, vaccine effectiveness, and waning immunity. The model incorporates a delay 

representing the time required for individuals to become infectious after exposure, delay in the treatment, as 

well as a separate delay reflecting the period between vaccination and the development of immunity. In addition, 

a delay is introduced in the return of recovered individuals to the susceptible class, simulating the gradual loss of 

immunity over time. The stability of the disease-free and endemic equilibria is examined using both local and 

global analysis. Local stability conditions are derived through the basic reproduction number and characteristic 

roots, while global stability is explored using a Lyapunov-based approach. Numerical simulations are carried 

out to demonstrate how varying the delays influences the disease progression and control, offering practical 

implications for public health strategies. 
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INTRODUCTION 

 

Infectious diseases have long posed significant challenges to public health, largely due to their ability to spread rapidly 

and resurface unexpectedly. Over time, considerable research has focused on understanding the patterns of disease 

transmission and identifying effective strategies to contain outbreaks. Among the tools that have proven invaluable in 

this effort is mathematical modelling, which allows researchers to represent disease dynamics through equations and 

simulate how infections progress within a population. 

 

Traditional models often classify individuals into compartments such as susceptible, infected, and recovered, forming 

the basis of the well-known SIR framework. These compartmental models have helped in analyzing a wide range of 

infectious diseases [3,5,9,11,14,20]. However, real-world disease spread involves additional complexities that these 

basic models may not fully capture. One such aspect is the delay in various disease-related processes, which can 

significantly alter the course of an outbreak [4, 6, 9, 10, 12, 15]. 

 

In particular, the delay between infection and the onset of infectiousness, known as the transmission delay, plays a 

critical role in the spread of many diseases. Similarly, after receiving a vaccine, individuals typically do not develop 

immunity instantly; this vaccination delay can affect how quickly a population becomes protected. Even the delay in 

treatment affects the spread of infection. Moreover, immunity, whether from recovery or vaccination, is not always 

permanent. Individuals may gradually lose their immunity and become susceptible once again. Accounting for this 

delay in loss of immunity provides a more realistic view of how diseases may re-emerge in populations over time[1-

2,13,16, 21]. 

 

By integrating these four types of delays-transmission delay, vaccination delay, and immunity waning delay-into our 

models, we can better understand the timing and scale of outbreaks, as well as assess the effectiveness of public health 

measures like vaccination campaigns, quarantine periods, and booster shots. These insights are especially important in 

managing diseases where immunity does not last indefinitely or where vaccine rollout faces logistical challenges. 

 

In this study, we build upon the classical SIR model by incorporating treatment and vaccination strategies, as well as 

the above-mentioned delays. The model originally proposed in [18] serves as our foundation. Prior studies, such as [7], 

have explored the impact of time-dependent treatment and vaccination rates, while [8] analysed the global stability of 

related models. The consequences of delays associated with vaccine efficacy were considered in [17]. In [19] the 

predictive dynamics of the model is studied. In our work, we extend these ideas by introducing explicit time delays in 

four key processes: the transmission of infection, the activation of vaccine-induced immunity, treatment delay and the 

return of recovered individuals to the susceptible class due to immunity loss. We analyze how these delays influence 

the behavior of the system and the potential for disease persistence or elimination. 
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The paper is organized as follows: Section 2 introduces the mathematical model and discusses its fundamental 

properties. In Section 3, we conduct a detailed stability analysis, both local and global, to understand how the system 

responds to different delay parameters. Section 4 presents numerical simulations that illustrate the influence of delays 

on the progression and control of the disease. Finally, Section 5 concludes the study with a summary of key findings 

and potential directions for future research. 

 

Model Description 

We study a compartmental model consisting of three groups: susceptible ′𝑢′ ,  infected ′𝑣 ′ , and recovered 

′𝑤 ′ individuals. The model incorporates time delays and is governed by the following set of differential equations: 

 

𝑢′ = 𝑎 − 𝑏𝑓 𝑢, 𝑣 − 𝑑𝑢 − 𝑐𝑉 𝑢(𝑡 − 𝜂) + 𝛼𝑤 𝑡 − 𝜇  

𝑣 ′ = 𝑏1𝑓 𝑢 t − τ , 𝑣 − 𝑟𝑃 𝑣 − 𝑑1𝑣 

𝑤 ′ = 𝑟𝑃 𝑣 𝑡 − δ  − 𝛼𝑤        (1) 

 

Here: 

 

 𝑎: Rate of entry into the susceptible class. 

 𝑓 𝑢, 𝑣 : Infection function based on contact between susceptible and infected individuals. 

 𝑏: Infection contact rate. 

 𝑑: Natural removal rate of susceptibles (e.g., through immunity or external causes). 

 𝑉 𝑢 : Vaccination function dependent on the susceptible population. 

 𝑐: Rate of successful vaccination. 

 𝑏1 < 𝑏: Reduced infection rate due to partial protection or immunity. 

 𝑃 𝑣 : Recovery function through treatment. 

 𝑟: Treatment recovery rate. 

 𝑑1: Disease-induced death rate. 

 𝛼: Rate of immunity loss leading to re-susceptibility. 

 

Time Delays 

 

 > 0: Delay representing the incubation period (time from exposure to infectiousness). 

 > 0: Delay in treatment. 

 𝜇> 0: Delay for recovered individuals to become susceptible again due to waning immunity. 

 𝜂> 0:  Delay in Vaccination 

 

Model Assumptions [1] 

 

 𝑓 𝑢, 𝑣 ≥ 0, 𝑃 𝑣 ≥ 0, 𝑉 𝑢 ≥ 0  ∀𝑢 𝑎𝑛𝑑 ∀𝑣 

 𝑓 𝑢, 0 ≥ 0, ∀𝑢 

 𝑓 0, 𝑣 ≥ 0, ∀𝑣 

 𝑓 0,0 = 0, 𝑃 0 = 0, 𝑉 0 = 0. 

 

These conditions ensure that infection, recovery, and vaccination behave in a biologically realistic manner. 

 

Using the approach outlined in [17], we establish that the solutions of model (1) remain both positive and 

bounded, and present the result as follows. 

 

Theorem 2.1 

If the initial conditions are nonnegative, then all solutions to system (1) remain nonnegative and bounded for all t ≥ 0 

[17]. 

In the next section, we analyze the local and global stability of the equilibrium points of the system, taking into account 

the effects of the time delays. 
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STABILITY ASPECTS 

 

Existence of equilibria 

When using mathematical models like Model (1) to study how diseases behave in a population, one of the key steps is 

identifying the long-term behavior of the system. This involves finding what are known as equilibrium points, which 

describe the possible steady states that the population may settle into over time. Two important types of equilibrium 

often arise in such models: the disease-free equilibriumand theendemic equilibrium. 

 

The disease-free equilibrium refers to a situation where the infection has been completely cleared from the population. 

In this case, there are no infected or recovered individuals—only susceptible ones remain. Mathematically, it is written 

as  𝑢∗, 0,0 , where 𝑢∗ > 0 represents the size of the healthy, uninfected population. 

 

On the other hand, the endemic equilibrium describes a condition in which the disease continues to exist in the 

population over time. Here, all three groups—susceptible, infected, and recovered—are present in the system with 

positive values. This state is written as  𝑢∗, 𝑣∗, 𝑤∗ , with each term greater than zero. It suggests a persistent level of 

infection, even if it doesn’t grow or shrink. 

 

Understanding whether these points are stable helps us predict whether the disease will eventually disappear or 

continue circulating in the population. This kind of analysis also plays a key role in evaluating how effective public 

health strategies—like vaccination and treatment—might be in controlling or eliminating the disease. 

 

The basic reproduction number, written as 𝑅0, is an important concept used to estimate how a disease might spread. It 

tells us how many people, on average, one infected person can pass the disease to in a population where everyone is 

still vulnerable. If 𝑅0 is greater than 1, the disease is likely to spread; if it is less than 1, it will likely die out. 

 

In the case of Model (1), we use what’s called thenext-generation matrix methodto calculate 𝑅0. This method helps us 

understand how new infections are generated and spread through the population, based on the model’s structure.  We 

get 𝑅0 =
𝑏1𝑓𝑣 𝑢

∗,0 

𝑟𝑃′  0 +𝑑1
 (refer to [17] for detailed derivation of 𝑅0) 

 

Local Stability 

Looking at how stable the equilibrium points are in the model helps us understand whether a disease will fade away or 

continue to spread over time. Local stability, in particular, tells us how the system behaves when there’s a small change 

in the number of infections or recoveries. If the system returns to its original state after a slight disturbance, the 

equilibrium is said to be stable. But if the system moves further away from that point, it means the disease might spread 

more or eventually die out, depending on the situation. 

 

We’ll begin by outlining the conditions that determine whether the disease-free equilibrium remains stable when small 

changes occur in the system. 

 

Theorem 3.1: System (1) will be locally stable at disease free equilibrium point  𝑢∗, 0,0  if  

 

(i) 𝑅0 < 1, (ii)𝛼𝑒−𝜆𝜇 < 𝑏𝑓𝑢 𝑢
∗, 0 + 𝑑 + 𝑐𝑒−𝜆𝜂𝑉𝑢𝜂

 𝑢∗ , (iii)𝑟𝑒−𝜆𝛿𝑃𝑣𝛿  0 < 𝛼. 
 

Proof: The characteristic equation for the system (1) at  𝑢∗, 0,0  is given by  

 

 

𝜆 − 𝐴1 𝑄1 0
0 𝜆 − 𝐵1 0
0 0 𝜆 − 𝐶1

 = 0 

 

𝐴1 = −𝑏𝑓𝑢 𝑢
∗, 0 − 𝑑 − 𝑐𝑒−𝜆𝜂𝑉𝑢𝜂

 𝑢∗ + 𝛼𝑒−𝜆𝜇  

𝑄1 = −𝑏𝑓𝑣 𝑢
∗, 0  

 

𝐵1 = 𝑏1𝑓𝑣 𝑢
∗, 0 − 𝑟 𝑃′ 0 − 𝑑1 + 𝑏1𝑒

−𝜆𝜏𝑓𝑢𝜏
 𝑢∗, 0  

𝐶1 = −𝛼 + 𝑟𝑒−𝜆𝛿𝑃𝑣𝛿 (0) . 
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Clearly 𝐴1, 𝐵1 and 𝐶1are the eigenvalues. 

 

A system of the form (1) is unstable if any of its eigenvalues have a positive real part, and it is stable if all the 

eigenvalues are negative. 

 

If 𝐵1 > 0, then clearly 𝑅0 > 1.Thus, if 𝑅0 > 1 then the system is unstable. 

 

For the system to be stable 𝐴1 < 0, 𝐵1 < 0, and 𝐶1 < 0. 
𝐴1 < 0 ⟹  𝛼𝑒−𝜆𝜇 < 𝑏𝑓𝑢 𝑢

∗, 0 + 𝑑 + 𝑐𝑒−𝜆𝜂𝑉𝑢𝜂
 𝑢∗ , 

𝐵1 < 0 ⟹ 𝑅0 < 1, 

𝐶1 < 0 ⟹  𝑟𝑒−𝜆𝛿𝑃𝑣𝛿 (0) < 𝛼. 

 

Thus proved. 

 

Next, we state the conditions for local stability at the endemic equilibrium.  

 

Theorem 3.2: For the conditions 

 

(i) 𝛼𝑒−𝜆𝜇 < 𝑏𝑓𝑢 𝑢
∗, 𝑣∗ + 𝑑 + 𝑐𝑒−𝜆𝜂𝑉𝑢𝜂

 𝑢∗  , 

(ii) 𝑏1𝑓𝑣 𝑢
∗, 𝑣∗ + 𝑏1𝑒

−𝜆𝜏𝑓𝑢𝜏
 𝑢∗, 𝑣∗ < 𝑟 𝑃′ 𝑣∗ + 𝑑1, 

(iii) 𝑟𝑒−𝜆𝛿𝑃𝑣𝛿 (𝑣∗) < 𝛼, 

system (1) is locally stable at the endemic equilibrium point  𝑢∗, 𝑣∗, 𝑤∗  

 

Proof: The characteristic equation for the system (1) at  𝑢∗, 𝑣∗, 𝑤∗  is given by  

 

 

𝜆 − 𝐴2 𝑄1 0
0 𝜆 − 𝐵2 0
0 0 𝜆 − 𝐶2

 = 0 

 

𝐴2 = −𝑏𝑓𝑢 𝑢
∗, 𝑣∗ − 𝑑 − 𝑐𝑒−𝜆𝜂𝑉𝑢𝜂

 𝑢∗ + 𝛼𝑒−𝜆𝜇  

𝑄2 = −𝑏𝑓𝑣 𝑢
∗, 𝑣∗  

𝐵2 = 𝑏1𝑓𝑣 𝑢
∗, 𝑣∗ − 𝑟 𝑃′ 𝑣∗ − 𝑑1 + 𝑏1𝑒

−𝜆𝜏𝑓𝑢𝜏
 𝑢∗, 𝑣∗  

𝐶2 = −𝛼 + 𝑟𝑒−𝜆𝛿𝑃𝑣𝛿 (𝑣∗) . 

 

Clearly 𝐴2, 𝐵2 and 𝐶2are the eigenvalues. 

 

𝐴2 < 0 ⟹  𝛼𝑒−𝜆𝜇 < 𝑏𝑓𝑢 𝑢
∗, 𝑣∗ + 𝑑 + 𝑐𝑒−𝜆𝜂𝑉𝑢𝜂

 𝑢∗ , 

𝐵2 < 0 ⟹ 𝑏1𝑓𝑣 𝑢
∗, 𝑣∗ + 𝑏1𝑒

−𝜆𝜏𝑓𝑢𝜏
 𝑢∗, 𝑣∗ < 𝑟 𝑃′ 𝑣∗ + 𝑑1, 

𝐶2 < 0 ⟹  𝑟𝑒−𝜆𝛿𝑃𝑣𝛿 (𝑣∗) < 𝛼. 

 

Under the above three conditions, all the eigenvalues of the system are negative, indicating that the equilibrium point is 

locally stable. 

 

We now turn our attention to analyzing the conditions required for global stability of the model. 

 

Global Stability At Endemic Equilibria 

When we’re trying to understand how a disease behaves over time using models like (1), it’s not just the immediate 

spread that matters; we also want to know what happens in the long run. That’s where the concept of global stability 

becomes really important. 

 

Simply put, if a system is globally stable, it means that no matter how things start-whether there are just a handful of 

infections or a sudden outbreak-it will eventually settle into a stable pattern. If this stable point is what we call an 
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endemic equilibrium, it means the disease won’t go away entirely, but it will stay at a constant level within the 

population. Even if the number of cases rises or falls for a while, over time, the system will naturally move back to that 

steady state. 

 

Studying global stability helps us figure out whether a disease is likely to fade out on its own or become a lasting issue 

in the community. In our case, we use the Lyapunov stability method to look at these long-term patterns and see if the 

model always returns to equilibrium, no matter where it starts. 

 

To establish global stability, we begin by assuming that the functions 𝑓, 𝑉 and 𝑃 satisfy certain Lipschitz 

conditions. 

 

𝐾1 𝑢 − 𝑢∗ + 𝐾2 𝑣 − 𝑣∗ ≤  𝑓 𝑢, 𝑣 − 𝑓 𝑢∗, 𝑣∗  ≤ 𝐾3 𝑢 − 𝑢∗ + 𝐾4 𝑣 − 𝑣∗  

𝑀1 𝑢 − 𝑢∗ ≤  𝑉 𝑢 − 𝑉 𝑢∗  ≤ 𝑀2 𝑢 − 𝑢∗  

𝑁1 𝑣 − 𝑣∗ ≤  𝑃 𝑣 − 𝑃 𝑣∗  ≤ 𝑁2 𝑣 − 𝑣∗                                                      (2)   

 

The following inequality we will be used in the next result 

 

For any real numbers 𝑎and 𝑏, 𝑎𝑏 ≤
1

4𝜃
𝑎2 + 𝜃𝑏2    (3) 

 

As the equilibrium point  𝑢∗, 𝑣∗, 𝑤∗  is the solution of the system (1). We can rewrite the system as  

 

(𝑢 − 𝑢∗)′ = −𝑏(𝑓 𝑢, 𝑣 − 𝑓 𝑢∗, 𝑣∗ ) − 𝑑(𝑢 − 𝑢∗) − 𝑐(𝑉 𝑢(𝑡 − 𝜂) − 𝑉 𝑢∗ )

+                      𝛼(𝑤 𝑡 − 𝜇 − 𝑤∗) 

(𝑣 − 𝑣∗)′ = 𝑏1(𝑓 𝑢 t − τ , 𝑣 − 𝑓 𝑢∗, 𝑣∗ ) − 𝑟(𝑃 𝑣 − 𝑃 𝑣∗ ) − 𝑑1(𝑣 − 𝑣∗) 

(𝑤 − 𝑤∗)′ = 𝑟(𝑃 𝑣 𝑡 − δ  − 𝑃 𝑣∗ ) − 𝛼(𝑤 − 𝑤∗)   (4) 

 

 

We state 

 

Theorem 3.3. The system (1) is globally stable at the equilibrium point if the functions of system (1) satisfy Lipschitz 

conditions (2) and  the parameters of the system satisfy  

 

(i) 𝑏𝐾1 + 𝑑 + 𝑐𝑀1 +
𝑏𝐾2

4𝜃1
−

𝛼

4𝜃2
−

𝑏1𝐾3

4𝜃1
> 0,  

(ii) 𝑏𝐾2𝜃1 − 𝑏1𝐾4 + 𝑟𝑁1 + 𝑑1 − 𝑏1𝐾3𝜃1 −
𝑟𝑁2

4𝜃3
> 0, 

(iii) 𝛼 1 − 𝜃2 − 𝑟𝑁2𝜃3 > 0. 

 

Proof: Let the Lyapunov function be 

𝐿 =  𝑢 − 𝑢∗ 2 +  𝑣 − 𝑣∗ 2 +  𝑤 − 𝑤∗ 2 + 𝛼 𝑢 − 𝑢∗   𝑤(𝑠) − 𝑤∗ 2

𝑡

𝑡−𝜇

𝑑𝑠

+ 𝑏1𝐾3 𝑣 − 𝑣∗   𝑢(𝑠) − 𝑢∗ 2

𝑡

𝑡−𝜏

𝑑𝑠

+ 𝑟𝑁2 𝑤 − 𝑤∗   𝑣(𝑠) − 𝑣∗ 2 − 𝑐𝑀1 𝑢 − 𝑢∗   𝑢(𝑠) − 𝑢∗ 2

𝑡

𝑡−𝜂

𝑡

𝑡−𝛿

. 
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Then the dini derivative along the solutions of (1) using (4)  is 

 

𝐷+ ≤  𝑢 − 𝑢∗  −𝑏 𝑓 𝑢, 𝑣 − 𝑓 𝑢∗, 𝑣∗  − 𝑑 𝑢 − 𝑢∗ − 𝑐 𝑉 𝑢(𝑡 − 𝜂) − 𝑉 𝑢∗  

+   𝛼 𝑤 𝑡 − 𝜇 − 𝑤∗  

+  𝑣 − 𝑣∗  𝑏1 𝑓 𝑢 t − τ , 𝑣 − 𝑓 𝑢∗, 𝑣∗  − 𝑟 𝑃 𝑣 − 𝑃 𝑣∗  

− 𝑑1 𝑣 − 𝑣∗  +  𝑤 − 𝑤∗  𝑟 𝑃 𝑣 𝑡 − δ  − 𝑃 𝑣∗  − 𝛼 𝑤 − 𝑤∗  

+ 𝛼 𝑤 − 𝑤∗ − 𝛼 𝑤 𝑡 − 𝜇 − 𝑤∗ + 𝑏1𝐾3 𝑢 − 𝑢∗ − 𝑏1𝐾3 𝑢 t − τ − 𝑢∗ 

+ 𝑟𝑁2 𝑣 − 𝑣∗ − 𝑟𝑁2 𝑣 𝑡 − δ − 𝑣∗ − 𝑐𝑀1 𝑢 − 𝑢∗ 2

+ 𝑐𝑀1 𝑢 − 𝑢∗  𝑢 t − 𝜂 − 𝑢∗  
 

Applying conditions (2) and simplifying, we get  

 

𝐷+ ≤ −𝑏(𝐾1 𝑢 − 𝑢∗ 2 + 𝐾2 𝑢 − 𝑢∗  𝑣 − 𝑣∗ ) − 𝑑 𝑢 − 𝑢∗ 2 − 𝑐𝑀1 𝑢 − 𝑢∗  𝑢 𝑡 − 𝜂 − 𝑢∗ 

+ 𝛼 𝑤 𝑡 − 𝜇 − 𝑤∗  𝑢 − 𝑢∗ + 𝑏1(𝐾3 𝑢 t − τ − 𝑢∗  𝑣 − 𝑣∗ + 𝐾4 𝑣 − 𝑣∗ 2)

− 𝑟𝑁1 𝑣 − 𝑣∗ 2 − 𝑑1 𝑣 − 𝑣∗ 2 + 𝑟𝑁2 𝑤 − 𝑤∗  𝑣 𝑡 − δ − 𝑣∗ − 𝛼 𝑤 − 𝑤∗ 2

+ 𝛼 𝑤 − 𝑤∗  𝑢 − 𝑢∗ − 𝛼 𝑢 − 𝑢∗  𝑤 𝑡 − 𝜇 − 𝑤∗ + 𝑏1𝐾3 𝑣 − 𝑣∗  𝑢 − 𝑢∗ 

− 𝑏1𝐾3 𝑣 − 𝑣∗  𝑢 t − τ − 𝑢∗ + 𝑟𝑁2 𝑤 − 𝑤∗  𝑣 − 𝑣∗ 

− 𝑟𝑁2 𝑤 − 𝑤∗  𝑣 𝑡 − δ − 𝑣∗ − 𝑐𝑀1 𝑢 − 𝑢∗ 2 + 𝑐𝑀1 𝑢 − 𝑢∗  𝑢 t − 𝜂 − 𝑢∗  

𝐷+ ≤ −𝑏𝐾1 𝑢 − 𝑢∗ 2 − 𝑏𝐾2 𝑢 − 𝑢∗  𝑣 − 𝑣∗ − 𝑑 𝑢 − 𝑢∗ 2 + 𝑏1𝐾4 𝑣 − 𝑣∗ 2 − 𝑟𝑁1 𝑣 − 𝑣∗ 2

− 𝑑1 𝑣 − 𝑣∗ 2 − 𝛼 𝑤 − 𝑤∗ 2 + 𝛼 𝑤 − 𝑤∗  𝑢 − 𝑢∗ + 𝑏1𝐾3 𝑣 − 𝑣∗  𝑢 − 𝑢∗ 

+ 𝑟𝑁2 𝑤 − 𝑤∗  𝑣 − 𝑣∗ − 𝑐𝑀1 𝑢 − 𝑢∗ 2 

 

From (3), we assume there exist 𝜃1 , 𝜃2 , 𝜃3 > 0, such that 

 

 𝑢 − 𝑢∗  𝑣 − 𝑣∗ ≤
1

4𝜃1
 𝑢 − 𝑢∗ 2 + 𝜃1 𝑣 − 𝑣∗ 2, 

 𝑢 − 𝑢∗  𝑤 − 𝑤∗ ≤
1

4𝜃2

 𝑢 − 𝑢∗ 2 + 𝜃2 𝑤 − 𝑤∗ 2 

 𝑣 − 𝑣∗  𝑤 − 𝑤∗ ≤
1

4𝜃3

 𝑣 − 𝑣∗ 2 + 𝜃3 𝑤 − 𝑤∗ 2 

 

Using these inequalities, we have  

𝐷+ ≤ −𝑏𝐾1 𝑢 − 𝑢∗ 2 − 𝑏𝐾2(
1

4𝜃1

 𝑢 − 𝑢∗ 2 + 𝜃1 𝑣 − 𝑣∗ 2) − 𝑑 𝑢 − 𝑢∗ 2 + 𝑏1𝐾4 𝑣 − 𝑣∗ 2

− 𝑟𝑁1 𝑣 − 𝑣∗ 2 − 𝑑1 𝑣 − 𝑣∗ 2 − 𝛼 𝑤 − 𝑤∗ 2 + 𝛼(
1

4𝜃2

 𝑢 − 𝑢∗ 2 + 𝜃2 𝑤 − 𝑤∗ 2)

+ 𝑏1𝐾3(
1

4𝜃1

 𝑢 − 𝑢∗ 2 + 𝜃1 𝑣 − 𝑣∗ 2) + 𝑟𝑁2(
1

4𝜃3

 𝑣 − 𝑣∗ 2 + 𝜃3 𝑤 − 𝑤∗ 2)

− 𝑐𝑀1 𝑢 − 𝑢∗ 2 

 

 

Simplifying we get  

 

𝐷+ ≤ − 𝑏𝐾1 + 𝑑 + 𝑐𝑀1 +
𝑏𝐾2

4𝜃1
−

𝛼

4𝜃2
−

𝑏1𝐾3

4𝜃1
  𝑢 − 𝑢∗ 2 −  𝑏𝐾2𝜃1 − 𝑏1𝐾4 + 𝑟𝑁1 + 𝑑1 −

𝑏1𝐾3𝜃1−𝑟𝑁24𝜃3𝑣−𝑣∗2−𝛼1−𝜃2−𝑟𝑁2𝜃3𝑤−𝑤∗2. 

 

By our assumption on parameter, we get 𝐷+ ≤ 0. 
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Hence by LyapunovTheory 𝑢 ⟶ 𝑢∗, 𝑣 ⟶ 𝑣∗and 𝑤 ⟶ 𝑤∗. 

 

Therefore, the system is (1) is globally stable at equilibria 𝑢∗, 𝑣∗, 𝑤∗ . 

 

Remark 3.1: The results discussed earlier clearly indicate that the system is capable of maintaining both local and 

global stability, even when time delays are introduced. While delays are often associated with instability in many 

dynamic systems, that is not always the case here. The key factor lies in how the model is formulated-specifically, in 

the careful selection of parameter values and the structure of the nonlinear components. 

 

When the parameters are chosen thoughtfully, and the nonlinear terms are designed to meet certain mathematical 

conditions or constraints, the system can continue to behave in a stable manner over time. This means that delays, by 

themselves, are not inherently destabilizing. Instead, it is the interplay between the delays, parameters, and nonlinear 

dynamics that determines the system’s overall behavior. A well-constructed model can effectively absorb or manage 

the impact of delays without losing stability. 

 

This insight is important, as it reassures us that delayed effects-common in real-world systems such as biological 

processes, communication networks, or control systems-do not automatically compromise the system's reliability. With 

proper mathematical modeling, stability can still be ensured. In the following section, we will illustrate this concept 

through a some of numerical examples. These examples will demonstrate how the behavior of the system changes as 

the delay parameters are varied, providing a clearer picture of the role delays play and how stability is affected in 

practice. 

 

Numerical Examples 

In this section, we explore several numerical examples based on system (1), where the parameter values, the functional 

forms of the nonlinear terms. To study the impact of delay on the system’s behavior, we vary the delay parameter. The 

system of delay differential equations is solved using MATLAB’s built-in dde23 solver, which is specifically designed 

for such problems. The resulting solutions are then plotted to visualize how the dynamics of the model evolve as μ\muμ 

changes. These simulations help provide deeper insight into the role of delay in shaping the system’s overall behavior. 

 

Consider the system 

𝑢′ = 11 − 4𝑓 𝑢, 𝑣 − 0.5𝑢 − 2𝑉 𝑢(𝑡 − 𝜂) + 2𝑤 𝑡 − 𝜇  

𝑣 ′ = 3𝑓 𝑢 t − τ , 𝑣 − 1.5𝑃 𝑣 − 3.5𝑣 

𝑤 ′ = 1.5𝑃 𝑣 𝑡 − δ  − 2𝑤       (5) 

 

Letting the functional values to be𝑓 𝑢, 𝑣 = 𝑢𝑣, 𝑉 𝑢 = 𝑢, 𝑃 𝑣 = 𝑣, for 𝜃1 =  𝜃2 =  𝜃3 = 0.5  the system 

(5) satisfies the constrains of Theorem 3.3. Therefore the system is stable globally at equilibrium point (1.6. 2, 1). The 

behaviour of the solution of the system (5) for various values of delays can be seen in Figures 1-4. 

 

Figure 1: Solution profile of (5) for different values of 𝛍 
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Figure 2 Solution profile of (5) for different values of 𝛕 

 
 

Figure 3 Solution profile of (5) for different values of𝜹 
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Figure 4 Solution profile of (5) for different values of𝛈 

 

Remark 4.1 

Looking at Figures 1 to 4, we notice a clear trend-when the delays increases, the system takes longer to settle into a 

steady state. In simple terms, a larger delay slows down how quickly the system stabilizes. However, the system still 

behaves in a predictable and controlled way.This steady behavior, even in the presence of longer delays, is due to the 

way the model has been carefully designed. The parameters and equations were chosen to meet specific conditions that 

help maintain balance. So, even though the system reacts more slowly, it doesn’t spiral out of control or become 

unstable.Instead, the system gradually moves toward stability, without showing any major swings or irregular behavior.  

 

This tells us that the model is robust—it can handle a certain amount of delay without losing its overall balance or 

performance. 

 

CONCLUSION 

 

This study explores the long-term dynamics of an SIR model that incorporates real-world complexities through various 

delays—specifically in infection transmission, vaccination, treatment, and the loss of immunity over time. These delays 

reflect more accurate disease progression patterns, where individuals do not respond to infection or interventions 

instantly, and immunity may wane after recovery.By introducing these time lags into the model, we gain a clearer 

understanding of how diseases behave when real-world processes like delayed vaccination effects, postponed treatment 

responses, and gradual return to susceptibility are taken into account. The analysis reveals that, although such delays 

can slow down the system’s movement toward equilibrium, they do not inherently lead to instability.Our findings show 

that, with appropriate parameter selection and well-structured nonlinear terms, the system can maintain both local and 

global stability even in the presence of multiple delays. Numerical simulations confirm that while the path to a steady 

state may become longer with increasing delays, the system still moves toward stability without dramatic oscillations or 

divergence.These results emphasize the importance of including biologically and socially relevant delays in epidemic 

models. Accounting for treatment delays, time lags in vaccination, and the gradual loss of immunity leads to a more 

realistic and dependable framework for understanding disease dynamics and planning effective intervention strategies. 
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